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A B S T R A C T

Background: Is it healthy to be chaotic? Recent studies have argued that mental disorders are associated with
more orderly neural activities, corresponding to a less flexible functional system. These conclusions were derived
from altered temporal complexity. However, the relationship between spatial complexity and health is unknown,
although spatial configuration is of importance for normal brain function.
Methods: Based on resting-state functional magnetic resonance imaging data, we used Sample entropy (SampEn)
to evaluate the altered spatial complexity in patients with generalized anxiety disorder (GAD; n = 47) compared
to healthy controls (HCs; n = 38) and the relationship between spatial complexity and anxiety level.
Results: Converging results showed increased spatial complexity in patients with GAD, indicating more chaotic
spatial configuration. Interestingly, inverted-U relationship was revealed between spatial complexity and anxiety
level, suggesting complex relationship between health and the chaos of human brain.
Limitations: Anxiety-related alteration of spatial complexity should be verified at voxel level in a larger sample
and compared with results of other indices to clarify the mechanism of spatial chaotic of anxiety.
Conclusions: Altered spatial complexity in the brain of GAD patients mirrors inverted-U relationship between
anxiety and behavioral performance, which may reflect an important characteristic of anxiety. These results
indicate that SampEn is a good reflection of human health or trait mental characteristic.

1. Introduction

Being chaotic is thought to be of importance for health (Pool, 1989).
Brain signal chaos arises from the interaction of numerous neuronal
circuits that operate over a wide range of temporal and spatial scales,
enabling the brain to adapt to the ever-changing environment and to
perform various mental functions (Yang and Tsai, 2013). Recent studies
have suggested that the neural system of patients with mental disorders
is accompanied by reduced temporal chaos (Takahashi, 2013; Yang and
Tsai, 2013). It means the disordered brain acts more regularly and
transforms less frequently from one state to another (Liu et al., 2017;
Torre-Luque et al., 2016), resulting in maladaptive behaviors
(Dajani and Uddin, 2015). Costa et al. (Costa et al., 2002) suggested
that loss of temporal complexity is a generic feature of pathologic dy-
namics in mental diseases. However, whether spatial complexity is also

associated with health is unknown, although spatial configuration is
essential for normal brain function (Pang et al., 2018; Wang et al.,
2018c).

Sample entropy (SampEn) is widely utilized to evaluate the com-
plexity of a time series in functional magnetic resonance imaging
(fMRI), electroencephalogram (EEG), magnetoencephalogram, and
other physiological signals (Costa et al., 2002; Courtiol et al., 2016; Gao
et al., 2015; Wang et al., 2018a). It has been suggested to be a com-
mendable marker of individual health (Goldberger et al., 2002) and of
adaptive capacity in aging and disease (Farzan et al., 2017; Heisz et al.,
2015; Torre-Luque et al., 2016). FMRI-based SampEn has been shown
to be effective in predicting aging (Sokunbi, 2014), distinguishing brain
networks (Mcdonough and Nashiro, 2014), and representing cognitive
function (Yang et al., 2013). Because it is robust even in short data
segments or reordered data (Courtiol et al., 2016; Grandy et al., 2016),
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SampEn is suitable for studying the complexity of fMRI signal (Smith
et al., 2013; Yang et al., 2013). Instead of measuring signal complexity
across time, the spatial SampEn evaluates the complexity across brain
regions. Specifically, if there are many similar spatial patterns (e.g., a
descending pattern: a > b > c) across the brain, the spatial config-
uration will be very regular, showing low spatial complexity. In con-
trast, if there are various spatial patterns across the brain, the spatial
configuration will be irregular, showing high spatial complexity. Con-
sidering that (1) the amplitude distribution across brain regions is re-
liable during resting state (Raichle, 2015; Zuo et al., 2010) and is
changed during cognitive processing (Wang et al., 2018b; Zhang et al.,
2015) and (2) particular spatial pattern is closely associated with cog-
nitive functions (Wang et al., 2018b; Xue et al., 2010) and has been
utilized to predict brain states (Thavabalasingam et al., 2018; Xia et al.,
2018), we suggest that the spatial SampEn could reflect brain functions
just like temporal SampEn.

Generalized Anxiety Disorder (GAD) is a prevalent mental disorder
characterized by chronic, pervasive and intrusive worry
(American Psychiatry Association, 1994). Like other mental disorders,
GAD is associated with reduced neural signal complexity compared to
healthy controls (HCs) under resting conditions and when retrieving
stressful memories (Richman and Moorman, 2000; Takahashi, 2013;
Torre-Luque et al., 2016). Meanwhile, cognitive rigidity and inflex-
ibility have been shown in patients with GAD (Ottaviani et al., 2016), in
line with reduced brain signal variability (Armbruster-Genç et al., 2016;
Wang et al., 2015). With the rise of network neuroscience, researchers
have suggested that normal brain functions depend on effective inter-
regional cooperation more than solo local neural activity (Bassett and
Sporns, 2017). Beyond local alteration, abnormal amygdala-frontal and
cortico-cortical functional connections have been reported in patients
with GAD, which may change the pattern of spatial configuration across
brain regions (Cui et al., 2016; Fonzo and Etkin, 2016; Gold et al., 2016;
Makovac et al., 2016; Sylvester et al., 2012). Reduced temporal com-
plexity indicates that temporal signals are more regular in patients with
GAD while reduced functional connection suggests that these regular
signals are not synchronized between brain regions. That is to say, some
new spatial relationships appear in the brain of GAD patients. These
more diverse spatial relationships would increase the spatial complexity
of the brain in GAD patients.

In the current study, we highlighted the importance of spatial
configuration of neural activity for mental health and put forward
spatial SampEn to measure the spatial complexity across brain regions
in patients with GAD. According to aforementioned studies, we hy-
pothesized that the spatial complexity would be higher in patients with
GAD than that in healthy controls. We further calculated the relation-
ship between spatial complexity and anxiety level to test whether the
spatial complexity is associated with mental health.

2. Methods and materials

2.1. Participants

A total of forty-seven patients diagnosed with GAD were recruited
from the mental health center of Chengdu, Sichuan, China. Thirty-eight
age-, gender-, education-, mean frame-wise displacement (FD)-matched
HCs were recruited from the community through poster advertisement.
All patients were diagnosed by two experienced psychiatrists using the
Structured Clinical Interview for DSM–IV (patient edition). Exclusion
criteria included schizophrenia, major depressive disorder, mental re-
tardation or personality disorder, history of loss of consciousness,
substance abuse, and serious medical or neurological illness. The SCID
non-patient version (SCID–NP) was employed to ensure absence of
psychiatric illnesses in the HCs. None of the HCs presented a history of
serious medical or neuropsychiatric illness or a family history of major
psychiatric or neurological illness in their first-degree relatives. The
Hamilton anxiety scale (HAMA) was used to evaluate clinical states of

patients (Hamilton et al., 1976). All participants were evaluated using
the Spielberger Trait Anxiety Inventory (STAI) (Spielberger and
Sydeman, 1994), which represents the inherent trait anxiety of the
participant. Clinical and demographic data from the 85 participants are
shown in Table 1. Written informed consent, approved by the research
ethical committee of School of Life Science and Technology at Uni-
versity of Electronic Science and Technology of China (UESTC), was
obtained from each participant.

2.2. Medication information

Following previous studies (Pang et al., 2018; Versace et al., 2008),
we measured the total medication load index to test whether medica-
tion influences spatial complexity. Each anti-anxiety medication was
first coded as absent (0), low (1), or high (2). Individuals on level 0
were no-dose subtype, on levels 1 and 2 were coded as low-dose sub-
type, and on levels 3 and 4 as high-dose subtype. Then, we calculated a
composite measure of total medication load for each individual. This
measure reflects the dose and variety of medications taken by summing
all individual medication codes for each medication category
(Pang et al., 2018).

2.3. Imaging acquisition

All the fMRI data were acquired using a 3.0T GE DISCOVERY
MR750 scanner (General Electric, Fairfield, Connecticut, USA) at
UESTC with the gradient-recalled echo-planar imaging (EPI) sequence.
An 8-channel prototype quadrature birdcage head coil fitted with foam
padding was applied to minimize the head motion. Patients were in-
structed to remain motionless with their eyes closed and without
thinking of anything in particular. The imaging parameters were as
follows: repetition time/echo time = 2000ms / 30ms, 90° flip angle,
bandwidth=250 Hz/pixel, 43 axial slices (3.2 mm slice thickness
without gap), 64 × 64 matrix, 22 cm field of view (FOV). For each
participant, a total of 255 volumes were obtained.

Table 1
Demographic information and characteristics of patients with GAD and HCs.

GAD HC p value

Gender (M / F) 47 (17 / 30) 38 (19 / 19) 0.200a

Age (years) 38.38 ± 9.08
(mean ± SD)

35.24 ± 10.34 0.139b

Education (years) 11.30 ± 3.64 12.37 ± 3.89 0.195b

mean FD (mm) 0.0923 ± 0.0470 0.1049 ± 0.0555 0.261b

Duration (months) 61.96 ± 73.980 – –
HAMA 24.28 ± 6.583 – –
STAI 55.04 ± 8.698 41.29 ± 5.437 <0.001b

Medication load index 1.40 ± 0.85 – –
Antianxiety

medications, no. of
patients

Fluoxetine 1 – –
Sertraline 5 – –
Paroxetine 13 – –
Citalopram 1 – –
Escitalopram 9 – –
Fluvoxamine 1 – –
Venlafaxine 5 – –
Duloxetine 1 – –
Mirtazapine 8 – –

Note: SD, standard deviation; GAD, generalized anxiety disorder; HC, healthy
control; FD, frame-wise displacement; HAMA, Hamilton anxiety rating scale;
STAI, Spielberger trait anxiety inventory.

a Chi-square test.
b Independent-sample t-test.
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2.4. Imaging preprocessing

Functional images were preprocessed using the Data Processing
Assistant for Resting-State fMRI (DPARSF 2.2, http://www.restfmri.
net/forum/DPARSF). To ensure the scanning environment stabilization,
the first five volumes were discarded. The remaining 250 images were
slice-time corrected, spatially aligned, spatially normalized to Montreal
Neurological Institute (MNI) EPI template, and resampled to
3 × 3 × 3mm3 voxels. After normalization, the blood oxygenation
level-dependent (BOLD) signal of each voxel was detrended to abandon
the linear drift. Friston 24 head motion parameters, white matter signal,
cerebrospinal fluid signal and global signal were further regressed out.
SampEn was also calculated based on data without global signal re-
gression, because the regression of global signal has been suggested to
change inter-regional relationship (Murphy and Fox, 2017). Finally,
band-pass filter was performed with the frequency band 0.01–0.08 Hz
to reduce the influences of low-frequency drift and high-frequency
physiological noises (Liu et al., 2017). The FD was used to represent
instantaneous head motion (Power et al., 2012). No participant was
excluded with a FD threshold of 0.5 mm.

2.5. SampEn analysis

The SampEn analysis was developed as a biologically meaningful
measure of complexity (Costa et al., 2002; Richman and Moorman,
2000). It is a variant of approximate entropy which could provide a
good estimation of entropy even when the match count is low
(Richman and Moorman, 2000). The SampEn was obtained by Eq. (1):

= −

+

SampEn m r N log C r
C r

( , , ) ( )
( )

m

m

1

(1)

where m is the pattern length, r (similarity factor) which represents a
proportion of the standard deviation (SD) of the signal series is a dis-
tance threshold, and N is the length of the signal sequence. Cm(r) is the
correlation sum which measures the average likelihood of m-length
patterns in a signal series. Two patterns match if the distance is less
than r. Prior studies have suggested that data lengths of 10m–20m is
reasonable to estimate SampEn (Richman and Moorman, 2000; Yang
et al., 2013). Therefore, m = 1 and m = 2 were assessed here, con-
sidering the data length of 246. Fig. 1 illustrates the parameters of
spatial SampEn.

For spatial SampEn, the preprocessed data were divided into 246
regions using the Brainnetome Atlas (Fan et al., 2016). This atlas pro-
vides functionally meaningful division of brain regions, reducing data
redundancy meanwhile (Fan et al., 2016). The values of brain regions
were arranged according to label numbers provided by the Brainnetome
Atlas. To demonstrate its tolerance to reordered data, the SampEn was
also calculated based on data arranged in odd then even labels. At each
time point, the spatial SampEn was calculated based on the spatial

series consisting of the mean signal of 246 regions. In all calculations,
the r value ranged from 0.05 to 0.50 with 0.05 step wise as suggested by
previous studies (Grandy et al., 2016; Yang et al., 2013). Lastly, the
values of SampEn were averaged across time points to get a re-
presentative value of each participant.

2.6. Statistical analysis

Two-sample t test was used to assess the difference of spatial
SampEn for all combinations of m and r between two groups of parti-
cipants. The minimum p value of t test indicates the largest discrepancy
between two groups of people, thus was used as an indicator of the
optimal parameters of spatial SampEn. Since the SampEn is a nonlinear
index (Courtiol et al., 2016), both linear and quadratic relationships
between spatial SampEn and STAI score were conducted using partial
correlation analysis with age, gender, education, and mean FD as
control variables. These correlations were retested without regressing
out these variables. For those patients who are on medication, Pearson's
correlation between total medication load index and spatial SampEn
under each of the aforementioned parameters was calculated.

3. Results

3.1. The optimal parameters of spatial SampEn

In the preliminary calculation, the largest discrepancy of spatial
SampEn between GAD and HC groups appeared when r = 0.30 and
m = 1. For m = 2, the largest difference between two groups appeared
when r = 0.45 (see Fig. 2). Results obtained from the combination of
these parameters were further analyzed.

3.2. Increased spatial complexity in patients with GAD

As shown in Fig. 3, spatial SampEn was increased in patients with
GAD compared with HCs which could pass Bonferroni correction for
multiple comparisons (<0.05/18 = 0.0028). Considering that m and r
were often set as the optimal and constant values (Yang et al., 2013),
the current results under parameters of m = 1 and r = 0.3 were
thought to be the primary results, although highly consistent results
were observed under other parameter combinations. These results in-
dicated that patients with GAD have a more chaotic spatial configura-
tion of brain activity than HCs.

3.3. Non-linear relationship between spatial SampEn and STAI score

As shown in Fig. 4, an inverted-U relationship between spatial
SampEn and STAI score was consistently observed (r = −0.34, p =
0.008 for m = 1 and r = −0.33, p = 0.009 for m = 2), whereas the
linear correlation was unapparent (r = 0.19, p = 0.088 for m = 1 and

Fig. 1. Illustration for the calculation of SampEn. The width of three horizontal bar at the bottom represent the value of r. The left pattern length is 3 while the right
one is 2.
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r = 0.17, p = 0.112 for m = 2). We also tested the linear and quadratic
relationships between SampEn and STAI score in HC and patient
groups, respectively. Again, the inverted-U relationship was found in
HC group (r = −0.51, p = 0.005 for m = 1 and r = −0.49, p = 0.009
for m = 2) with significantly linear relationship appearing in neither
HC group (r = 0.23, p = 0.166 for m = 1 and r = 0.23, p = 0.157 for
m = 2) nor patient group (r = −0.24, p = 0.106 for m = 1 and
r = −0.22, p = 0.130 for m = 2). These consistent findings of in-
verted-U relationship between spatial SampEn and STAI score indicate
a non-linear relationship between anxiety level and the spatial com-
plexity of neural activity, providing novel evidence for the complex
neuropsychological mechanism of anxiety. Furthermore, there is no
correlation between total medication load index and spatial SampEn
(all ps are larger than 0.12), indicating that medication has no sig-
nificant effect on spatial SampEn.

3.4. Reliability of current results

We retested the aforementioned results using reordered data and the
data without global signal regression. Increased spatial SampEn in pa-
tients with GAD was consistently observed in these data (see
Supplementary Materials Tables S1 and S2). Furthermore, the inverted-
U relationship was also duplicated with these two kinds of signals (see
Tables S3 and S4). We also retested these results without controlling for

age, gender, education and mean FD (Tables S5 and S6). These main
results were replicated again. These findings suggested the stability and
reliability of both increased spatial complexity in patients with GAD
and non-linear complexity-anxiety relationship.

4. Discussion

To the best of our knowledge, this is the first study on the abnormal
spatial complexity of neural system in mood disorder. We observed
increased spatial complexity in patients with GAD, providing new evi-
dence beyond reduced temporal complexity in mental disorders, and
suggesting the neural system of GAD is spatially more diversity and
heterogeneity. Another advance is the finding of inverted-U relation-
ship between spatial complexity and anxiety level, suggesting non-
linear neural dynamic associated with anxiety. These reliable results
under different parameters suggest that spatial complexity, compared
with temporal complexity, could provide new insight into under-
standing the neural dynamic mechanism of GAD.

Essentially, SampEn is indicative of the predictability or complexity
of signal (Courtiol et al., 2016). Higher SampEn means less predict-
ability or more complexity. At spatial dimension, higher predictable
signal means more regular or similar spatial structures which may re-
flect higher homogeneous activities across brain regions (Sporns and
Betzel, 2016). Therefore, increased spatial SampEn in patients with
GAD compared to HCs suggests that the brain of people with GAD ap-
pears to be more heterogeneous and less integrated across brain re-
gions. Unlike temporal complexity, the less similarity between brain
regions in GAD may be associated with abnormal cortico-cortical and
cortico-subcortical functional connectivity in the patients (Cui et al.,
2016; Makovac et al., 2016), although the direct link between spatial
complexity and functional connectivity is lacking now. Alternatively,
the unpredictable spatial structure may reflect unstable energy dis-
tribution across brain regions during neural activities, considering that
(1) inter-regional energy distribution is stable in normal brain and (2)
energy is redistributed during cognitive processing (Baria et al., 2011;
Ponce-Alvarez et al., 2015; Wang et al., 2018b; Zuo et al., 2010). Ac-
cordingly, the increased spatial SampEn may reflect chaotic energy
distribution in the brain of GAD patients which may further disturb
cognitive function (e.g., leading to abnormal anxiety level). The psy-
chological and physiological mechanisms of altered spatial SampEn
deserve further investigations.

The inverted-U relationship between spatial complexity and anxiety
may result from several reasons. First, the SampEn is essentially a non-
linear measure of brain signal (Courtiol et al., 2016). Non-linear re-
lationships between brain signal complexity and neural characteristics
have been reported elsewhere (Nomi et al., 2017; Zappasodi et al.,
2015), which may also contribute to spatial complexity-anxiety re-
lationship. Second, anxiety level has been shown to be linked to be-
havioral performance in an inverted-U fashion. Specifically, the

Fig. 2. Parameter selection of spatial SampEn. p values of two-sample t-test
between GAD and HC groups are illuminated for all combinations of parameters
m and r. For m = 2, when r is small, there is no matched pattern for some
participants, leading to infinite SampEn. Therefore, p values are missing at
some points.

Fig. 3. Significant increase of SampEn in patients with GAD compared with HCs.
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moderate-intensity of anxiety rather than the lowest or the highest
anxiety level is associated with the best performance, indicating that
moderate anxiety level may reflect the optimal brain state (King et al.,
1987; Raglin and Turner, 1993; Sonstroem and Bernardo, 1982). On the
other side, the highest variability of brain signal facilitates the transi-
tion among various potential brain states, improving the flexibility of
cognition (Garrett et al., 2014; Guitart-Masip et al., 2016; Wang et al.,
2014a; Wang et al., 2016). Therefore, both higher anxiety and lower
anxiety are associated with reduced flexibility of cognition and spatial
complexity. Third, the inverted-U relationship may be modulated by
the dopamine system. Both brain signal variability and anxiety level are
associated with dopamine level in the cortico-striatum system (Guitart-
Masip et al., 2016; Mp et al., 2010; Schneier et al., 2009), while the
functional affection of dopamine level manifests an inverted-U curve
(Bromberg-Martin et al., 2010; Cools and D'Esposito, 2011). Fourth,
different trends of direction for linear correlation between spatial
complexity and anxiety level in patient and HC groups may be re-
sponsible for the inverted-U relationship. Although the linear correla-
tions are not significant, there are somewhat positive and negative
trends of spatial complexity-anxiety correlation in HC and patient
groups, respectively. These trends indicate that the spatial configura-
tion is more regular as anxiety increases or decreases from moderate
level. However, the two kinds of regularities may direct to different
states: normal and abnormal (Fonzo and Etkin, 2016; Yang and Tsai,
2013). Therefore, the opposite spatial complexity-anxiety relationship
may reflect different neural dynamical mechanisms in patients with
GAD and healthy people. Overall, the mechanism of inverted-U re-
lationship between spatial SampEn and anxiety level is far from clear
and warrants further multi-modal studies combining behavioral, neu-
roimaging, and biochemical techniques.

There is no rigorous guideline for choosing optimal parameters of
SampEn (Costa et al., 2002; Mizuno et al., 2010; Yang et al., 2013).
Usually, the estimation of SampEn in short time series of BOLD signal is
sufficient for m = 1 and m = 2 (Yang et al., 2013). When m increases,
the accuracy of entropy is deteriorated (Wang et al., 2014b). On the
other hand, similarity factor is critical to describe the nonlinear dy-
namics (Xie et al., 2010). When r is too small, the dissimilarity between
two systems may primarily be caused by noise; when r is too large, the
matching criteria is too loose to capture some signal details. Hence, it is
best that the r value is large enough to allow the algorithm to distin-
guish signal from noise, but small enough to allow the algorithm to
evaluate the detail of signal (Chen et al., 2009; Sokunbi, 2014). Fol-
lowing these principles, we chose r = 0.30 for m = 1 and r = 0.45 for
m = 2. Our selection of m and r is based on the largest discrepancy
between GAD and HC groups, which is also compatible with previous

fMRI studies (Yang et al., 2015; Yang et al., 2013).
Although the results about SampEn are interesting and reliable,

several questions remain. First, the length of signal series in fMRI stu-
dies is shorter than that in EEG studies. Although SampEn is stable in
relative short signal (Grandy et al., 2016; Sokunbi, 2014), long fMRI
data may benefit investigations of signal complexity. Second, we used
ROI-wise analysis rather than voxel-wise analysis due to two reasons:
(1) the divisional brain regions have been demonstrated to be func-
tional meaningful (Fan et al., 2016); (2) the signal of single voxel is
vulnerable to preprocessing operations such as spatial smooth. The ROI-
wise analysis and voxel-wise analysis reflect different spatial sampling
rates just like different temporal sampling rates of EEG and fMRI, ex-
pressing distinctive characteristics of signal complexity. Therefore,
voxel-wise analysis deserves further investigations. Third, the me-
chanism of inverted-U relationship between spatial complexity and
anxiety level could not be determined in this study. Whether the non-
linear relationship is specific to anxiety or could be broadened to other
relationships between brain signal complexity and psychological char-
acteristics are still unclear. Fourth, although increased spatial com-
plexity in patients with GAD is consistently observed under different
parameters, the sample is relative small (n = 85) and most patients are
on medication (see Table 1). Although there is no correlation between
medication and spatial complexity, medication may make the brain
function of patients with GAD similar to that of healthy controls
(Mochcovitch et al., 2014; Whalen et al., 2008). Therefore, these results
should be treated with caution and be verified in big data with first-
episode, drug-naïve patients. Fifth, the relationship between spatial
complexity and functional connectivity is undetermined. Spatial com-
plexity is a global index obtained at each time point or the overall time
course while the functional connectivity measures inter-regional de-
pendence by calculating temporal correlation between two time
courses. Therefore, the relationship between them cannot be directly
assessed, although some previous studies have suggested confusing
relationship between temporal complexity and functional connectivity
(Ghanbari et al., 2015; Mcdonough and Nashiro, 2014; McIntosh et al.,
2014). Last, there are various measures derived from graph theory that
have been applied to study the spatial configuration of patients with
mental disorders. However, only a few of them reflect the global
characteristic of brain activity such as the small-world property. Like
the significance of global signal in schizophrenia (Yang et al., 2017),
the spatial complexity as a global index may provide useful information
for neural dynamics of mental disorders, which deserves more in-
vestigations.

As a preliminary study, we introduced the spatial SampEn to mea-
sure brain signal complexity of patients with GAD and demonstrated

Fig. 4. The correlation between spatial SampEn and STAI. Significant quadratic rather than linear relationships are revealed for m = 1 (a) and m = 2 (b).
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increased heterogeneity across brain regions in GAD patients, un-
covering different scenarios from temporal complexity. The relation-
ship between spatial complexity and anxiety level, mirrors the inverted-
U relationship between behavioral performance and anxiety, implying
an important mechanism of neural dynamics in GAD. These findings
shed new light on the neurodynamic mechanism of GAD, suggesting
that spatial SampEn could serve as a good reflection of health and an
effective biomarker of GAD.
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